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Abstract The subject of this paper, the scattering of flexural waves by constrained elastic plates floating
on water is relatively new and not an area that Professor Newman has worked in, as far as the authors are
aware. However, in two respects there are connections to his own work. The first is the reference to his
work with H. Maniar on the exciting forces on the elements of a long line of fixed vertical bottom-mounted
cylinders in waves. In their paper (J Fluid Mech 339 (1997) 309–329) they pointed out the remarkable
connection between the large forces on cylinders near the centre of the array at frequencies close to certain
trapped-mode frequencies, which had been discovered earlier, and showed that there was another type
of previously unknown trapped mode, which gave rise to large forces. In Sect. 6 of this paper the ideas
described by Maniar and Newman are returned to and it is shown how the phenomenon of large forces is
related to trapped, or standing Rayleigh–Bloch waves, in the present context of elastic waves. But there is
a more general way in which the paper relates to Professor Newman and that is in the flavour and style of
the mathematics that are employed. Thus extensive use has been made of classical mathematical methods
including integral-transform techniques, complex-function theory and the use of special functions in a man-
ner which reflects that used by Professor Newman in many of his important papers on ship hydrodynamics
and related fields.

Keywords Flexural waves · Kirchhoff plate theory · Periodic arrays · Trapping

1 Introduction

In recent years there has been considerable interest in problems involving very large floating structures
for a variety of practical reasons. One of these was the possibility of designing a massive floating concrete
runway offshore. Such a structure would inevitably bend under the influence of wave action and this
prompted a whole new set of challenging interaction problems involving the structure and the supporting
body of water. A wide range of references to such problems can be found in [1].
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In this paper we consider a specific set of problems which appear to have intrinsic interest in their own
right, whilst also being of relevance to applications. The free surface of a body of water of depth h extend-
ing indefinitely in both horizontal directions is covered by a uniform thin elastic plate. It is known that
flexural-gravity waves can propagate through the plate with a wavenumber determined from a dispersion
relation obtained through the coupling of the plate and the fluid motion. In practical applications large
floating elastic plates may be secured by a large number of fixed vertical cylindrical columns extending
throughout the depth of water. Other possibilities might include tethering the structure to the sea bed
using a large number of moorings.

In the simplest model the region of contact between the top of the columns and the underside of the plate
would be fixed and a problem of practical interest would be to determine the wave forces at those regions
due to a prescribed incoming wave field. For a theoretical single supporting column the wave-induced
flexure would create a force which attempts to break the contact with the support and it can confidently be
presumed that such a force would be proportional to the incident wave height. In practice, large numbers
of supporting columns would be needed and design considerations would dictate that they be placed in
some regular, perhaps rectangular pattern.

Now the prediction of wave forces on each region of contact is clearly less easy, since resonant inter-
actions between neighbouring supports is possible. A vivid illustration in a related context is provided by
Maniar and Newman [2] who computed the horizontal wave-exciting forces on a linear regular array of a
hundred identical vertical bottom-mounted circular cylinders in finite-depth water. They showed that at
two particular incident wave frequencies the force on the cylinders near the centre of the array could be
over 30 times the force on a cylinder in isolation in the same wave field. One of these frequencies coincided
with the so-called trapped-mode frequencies discovered by Callan et al. [3] for a single circular cylinder in
a channel in a wave tank of width the same as the spacing between adjacent cylinders in the linear array of
cylinders, when a Neumann condition, representing no-flow through the tank walls, is applied. The second
frequency for which large forces occurred led to the discovery of a trapped mode in which a Dirichlet
condition is satisfied on the walls of the tank. See, for example [4]. Again, Evans and Porter [5] showed that
in the water-wave context, vertical bottom-mounted circular cylinders now arranged with regular spacing
on a circle, could experience large wave-exciting forces. In particular, for just four cylinders with centres at
the vertices of a square, the horizontal exciting force on each of the cylinders could be as high as 54 times
the force on just one of them in isolation, when the spacing between the cylinders was reduced to half the
diameter of the cylinders, but the effect disappeared when the symmetry was broken by slightly increasing
the size of one of the cylinders, at the same spacing.

We expect similar effects in the problems discussed here, but for the very large number of supports which
would be required to secure the floating platform suggests that we are dealing with a two-dimensional
lattice problem similar to that which arises in solid-state physics. See, for example [6]. Thus, a regular
two-dimensional array of circular contact regions between supports and plate constitutes a lattice which,
if assumed to extend indefinitely in two horizontal directions, permits flexural waves only in certain direc-
tions, depending on the value of the wavenumber. This is a substantial problem in its own right on which
the authors have made considerable progress and which will be published separately.

It might be expected that a wave approaching a finite lattice of supports in directions prohibited by the
infinite lattice theory, would create large forces at the regions of attachment, since the wave energy would
not be able to escape easily, once inside the lattice.

It is clear from the above that the information on infinite two-dimensional lattices will be invaluable
in predicting the design forces at regions of contact between columns and floating platforms in finite
two-dimensional arrays. However, even assuming small amplitude waves, the linearised boundary-value
problem is formidable and certain assumptions need to be made to make progress without compromising
the qualitative validity of the results. First, the columns are (reasonably) assumed to have diameters small
compared to the flexural wavelengths in the elastic plate so that: (a) the effect of the columns beneath the
plate on the wave field is negligible and (b) the regions of contact between the top of the columns and
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the plate are assumed to be points which considerably simplifies the conditions which are satisfied there.
A similar assumption has been made to good effect in developing the so-called “point absorber” theory for
wave energy absorbers (see, for example [7]). With these assumptions, considerable progress can be made
using a Green function located at the point on the plate over water and the wave field can be expressed as
appropriate sums of such functions at each of the contact points between the columns and plate. Because of
the high-order nature of the boundary condition on the plate, expressed in terms of the velocity potential
defined throughout the fluid, the Green function itself is bounded at the contact points and the required
conditions there are easily satisfied.

We concentrate initially on a much simpler problem, which has all the key properties of the full problem,
namely a thin uniform elastic plate of infinite extent in vacuo which is pinned at a number of distinct points
which may form a lattice. The only difference between the full problem and this model is in the simpler
Green function which, when located at the origin, is now only a function of kr, where r is the radial distance
in the plane from the origin and k is the wavenumber for flexural waves in the infinite plate, given by
k4 = mω2/D. Here ω is the assumed angular frequency of motion, D is the bending stiffness of the plate
and m its mass per unit area. This simpler problem is of considerable interest in its own right, modelling as
it does the riveting of elastic plates in vacuo. Some early results for this model can be found in [8].

We must emphasize that we expect all of the qualitative behaviour predicted by this simpler model to
be reflected in the full model which only requires the use of the more general Green function incorpo-
rating the effect of the water under the plate. This claim can certainly be supported for high-frequency
short-wavelength wave motions in which scalings laws presented later in Sect. 8 show that the effect of the
fluid loading under the elastic plate is negligible. For more realistic longer waves of lower frequencies, this
is shown no longer to be the case.

Reverting to the simpler problem then, the assumption of a pinned point on a thin elastic plate needs
some discussion. Suppose that the region of contact is a small circle of radius ε on which the plate is
clamped. The boundary condition to be satisfied on the circumference according to thin-plate theory is
the vanishing of displacement and its radial derivative on r = ε; it is a simple matter to solve for the
scattering of an incident waves in the plate by such a clamped region. The solution is given by Norris and
Vermula [9] who also show that as ε → 0 the solution is given in terms of a multiple of the Green function
for the thin plate at r = 0, the constant being chosen to ensure that the total displacement, including the
incident wave, vanishes on r = 0. But in the course of taking the limit ε → 0, the second condition on the
vanishing of the radial derivative at r = 0 has to be relaxed. We shall adopt this assumption throughout,
namely that the single condition to be satisfied at a pinned point of the plate is the vanishing of the normal
displacement.

We start in Sect. 2 by introducing the governing equations for wave motion on a thin elastic plate in
vacuo and introduce some basic ideas by considering the simple problem of the scattering of plane flexural
waves by a single point, generalising the case where it is pinned to the case where it is constrained to move
by an impedance condition which includes the effects of a concentrated-mass loading, a spring term and
damping. In Sect. 3, a similar problem involving an arbitrary number of such points is considered, and near
resonance is discussed for a circular arrangement of points extending to infinity. In Sects. 4–6, the focus is
placed on either one or two rows of periodically constrained points. First, the scattering of a plane wave by
a single infinite periodic array is considered and it is proved that there always exists a frequency for which
there is total reflection of incident-wave energy. This property is used to consider trapping modes between
two such arrays which have the appropriate spacing between them. In Sect. 6, conditions for the existence
of Rayleigh–Bloch waves along the periodic array are proved. It is shown how the presence of a trapped
mode or a Rayleigh–Bloch solution affects the solution in the scattering by a finite number of periods in
the array.

In Sect. 7, we derive the corresponding formulation for the scattering by constrained points over water.
Although more complicated, it is illustrated how all the problems considered in Sects. 2–6 can be repeated
without any additional conceptual difficulty.
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2 Some basic ideas: scattering by a single point

In its equilibrium position the thin elastic plate occupies the x–y plane and when excited by an incident
wave field, undergoes a displacement normal to itself of the form Re{u(r)e−iωt} where ω is the radian
frequency of the incident excitation, and r = (x, y) = (r cos θ , r sin θ). Under classical Kirchhoff thin-plate
theory u(r) satisfies the equation of motion

D(�2 − k4)u(r) = 0, −∞ < x, y < ∞ (2.1)

in the absence of external forces. Here,� = ∂2/∂x2 + ∂2/∂y2 and k4 = mω2/D where D = Ed3/12(1 − ν2)

with E Young’s modulus, d the plate thickness, m the mass per unit area of the plate and ν is Poisson’s ratio.
A solution of (2.1) describing a long-crested incident wave making an angle ψ with the positive x-axis is

ui(r) = eik(x cosψ+y sinψ) = eikr cos(θ−ψ) (2.2)

and a fundamental Green function describing a time harmonic point force of strength D is given by

g(r; r′) = C{H0(kρ)− H0(ikρ)}, (2.3)

where C = i/8k2, ρ = |r − r′|, r′ = (x′, y′) and H0(x) ≡ H(1)
0 (x) is the Hankel function of the first kind of

order zero. Here, g(r; r′) satisfies

(�2 − k4)g(r; r′) = δ(r − r′) (2.4)

and is outgoing for ρ → ∞. The expression in (2.3) is well-known and can easily be derived using transform
methods. A useful alternative formula is

g(r; r′) ≡ g(x − x′, y − y′) = C
π i

∫ ∞

−∞
eik(x−x′)t

(
e−kλ|y−y′|

λ
− e−kγ |y−y′|

γ

)
dt, (2.5)

where

λ =
{
(t2 − 1)1/2, |t| ≥ 1,
−i(1 − t2)1/2, |t| < 1,

and γ = (1 + t2)1/2. (2.6)

An important property of g(r; r′) is that it is bounded as r → r′. From (2.3), it can be shown

g(r; r′) ∼ C + ρ2 log ρ

8π
+ O(ρ2), ρ → 0, (2.7)

whilst ∂g/∂ρ → 0 as ρ → 0. This follows because g satisfies a fourth-order differential equation in contrast
to the Green function for the Helmholtz equation describing small acoustic vibrations or the normal dis-
placement of a taut membrane which is given by the first term on the right-hand side of (2.3) and which is
logarithmically singular as ρ → 0.

This boundedness property of g means that it can be used to solve a variety of interesting problems. The
simplest is when the elastic plate is pinned at a single point, the origin, in the presence of an incident plane
wave (2.2), satisfying ui(0, 0) = 1, when the solution is

u(r) = ui(r)− C−1g(r; 0, 0) (2.8)
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which satisfies (2.1) everywhere, except at r = 0 where u(0, 0) = 0 as required, and the scattered wave is
outgoing. From (2.8),

D(�2 − k4)u(r) = −(D/C)δ(r), (2.9)

showing that the point force exerted at the origin is −D/C.
Notice that in contrast to the simple solution above, it is not possible to use the corresponding Green

function to pin a membrane.
A simple extension of the single pinned point is to assume that there is an external point force acting

which is proportional to the displacement of the point through an impedance coefficient, µD say. Then the
solution (2.8) is replaced by

u(r) = ui(r)+ Ag(r; 0, 0), (2.10)

where A = µu(0, 0). Thus, µu(0, 0) = A = µui(0, 0)+ µAC whence

A = µ/(1 − µC), and u(0, 0) = 1/(1 − µC). (2.11)

The case of a pinned origin is recovered from (2.11) by letting µ → ∞. In general we can assume

µD = Mω2 − κ − iων (2.12)

where k and ν are spring and damping restoring forces and M is a concentrated point mass. The case
ν �= 0 implies energy dissipation at the point, a complication which we shall overlook by setting ν = 0.
Non-dimensional quantities, µ̃ and κ̃ which depend only on physical parameters and not on frequency
come from noting the relation k4 = mω2/D, and writing

µ = (4k4a2)µ̃− 4̃κ/a2, where µ̃ = M/(4ma2), κ̃ = κa2/4D,

having anticipated the introduction of a length scale, a, to the problem.

3 Extension to scattering by N arbitrary points

Suppose each of the points rn, n = 1, 2, . . . , N supports a mass, spring and damper described by an imped-
ance µn, given by (2.12) in terms of Mn, κn and νn. The displacement everywhere is given by

u(r) = ui(r)+
N∑

n=1

Ang(r; rn) (3.1)

and

D(�2 − k4)u(r) = D
N∑

n=1

Anδ(r − rn), (3.2)
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(a) (b)

Fig. 1 Maximum displacement at the origin, |u| = |u(0, 0)| as ka varies for: (a) N = 4 points at (±a, ±a) with ψ = 0◦;
(b) N = 8 points at (±a, 0), (0, ±a), (±a/

√
2, ±a/

√
2) with ψ = 0◦. Values of µ̃ are shown against curves and κ̃ = 0

showing that the external force at the nth pin, DAn, satisfies DAn = µnDu(rm), n = 1, 2, . . . , N whence
from (3.1),

Am = µmui(rm)+ µm

∞∑
n=1

Ang(rm; rn), m = 1, 2, . . . , N (3.3)

a system of algebraic equations for the constants An and hence the force at each point. The displacement
is then

u(rn) = An/µn.

The limiting case of N pinned points is recovered by letting µn → ∞ so that the An satisfy

N∑
n=1

Ang(rm; rn) = −ui(rm), m = 1, 2, . . . , N (3.4)

with the displacement everywhere still given by (3.1). We define non-dimensional coefficients with Ãn =
An/k2.

One particular configuration of points worthy of investigation is when the points are arranged at regular
intervals on a circle.

In Fig. 1(a, b) we present results showing the maximum plate elevation (non-dimensionalised with
respect to the incident wave amplitude) at the centre of N = 4 and N = 8 points for a range of values of
µ̃ (̃κ is fixed at zero) as a function of wavenumber ka. The curves for µ̃ = 100 and µ̃ = 10 in Fig. 1(a, b)
change only very slightly for larger values of µ̃ and therefore gives an indication of the response when the
array of points is pinned. Thus the pinned array is the one which gives the largest response at the centre of
the array, being close to ten times the incident wave amplitude in the two cases. As expected, reduction of
the point mass loading on the plate (a decreased value of µ̃) leads to less resonance. It should be noted that,
if both κ̃ and µ̃ are non-zero but finite, there is an additional resonance in the system which is associated
with the excitation of the mass/spring oscillators at each of the individual points. Such a resonance has
an analogue in the study of freely floating bodies excited by incident waves, which also exhibit resonance
which depends upon the added mass and radiation damping coefficients of the body (see [10, Sect. 6.18] for
example). Consideration of the case when µ̃ = 0 but κ̃ �= 0, provides little added insight into this particular
problem, needless to say that the limit κ̃ → ∞ is equivalent to points that are pinned.

The nature of the resonance can be observed by plotting the maximum absolute value of the displace-
ment |u(r)| across the plate at the resonant frequencies for N = 4 and N = 8. This is done in Fig. 2(a, b)
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Fig. 2 Modulus of the wave amplitude, |u(r)|, with µ̃−1 = 0 (pinned points, shown as dots) and (a) N = 4 with ψ = 45◦,
ka = 1.792; (b) N = 8 with ψ = 0◦, ka = 5.5344

where incident wave angles of 45◦ and 0◦ (respectively) have been used. Light to dark shading represents
the transition from high to low amplitudes. The scale of the shading can be established with reference to
Fig. 1, so that the lightest shading at the centre of each figure corresponds to amplitudes of approximately
7.5 and 10.5 in Fig. 7(a, b).

4 Scattering by an infinite array of identical equally spaced points

In general the scattering by N arbitrary points, each satisfying an impedance condition such as (3.3) with
µn given by (2.12), requires the numerical solution of the N ×N system (3.4). Whilst this is straightforward
for any particular configuration, more light is shed on the scattering process by considering problems which
permit further analytic progress. Such a problem is provided by the assumption that the incident wave field
(2.2) is scattered by an infinite periodic array of points, each satisfying the same impedance relation,

An = µu(rn), where rn = (na, 0), n ∈ ZZ (4.1)

and a is the spacing between adjacent points. Then the solution may be written

u(r) = ui(r)+
∞∑

n=−∞
Ang(r; rn). (4.2)

But it is clear from the periodicity that the only difference between successive values of An is the change
in phase of the incident wave field from one point to the next. Thus An = An−1σ , where σ = eiβa and
β = k cosψ and so An = σ nA0. It follows that

A0σ
m = µσm + µA0

∞∑
n=−∞

σ ng((m − n)a, 0), (4.3)

where we have re-introduced the abbreviation g(r; r′) = g(x − x′, y − y′) for convenience and, from (2.5),

g((m − n)a, 0) = C
π i

∫ ∞

−∞
eik(m−n)ta

(
λ−1(t)− γ−1(t)

)
dt. (4.4)
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It follows, from (4.3) and (4.4) by redefining the summation variable, that

A0 = µ(1 + A0S), where S =
∞∑

n=−∞
σ−ng(na, 0) (4.5)

and so

A0 = µ/(1 − µS), and u(na, 0) = σ n/(1 − µS) (4.6)

from (4.1). The problem is now solved completely, the entire field being given by (4.2), which nows reads
as

u(r) = ui(r)+ us(r), where us(r) = A0

∞∑
n=−∞

σ ng(r; na, 0). (4.7)

To gain further insight into the solution, we need to consider the sum in (4.7) and also in the definition of
S given by (4.5). To do this we make use of the Poisson formula

∞∑
n=−∞

∫ ∞

−∞
e±inuF(u)du = 2π

∞∑
n=−∞

F(2πn) (4.8)

and the integral representation (2.5). Thus

S(ka,βa) = C
π i

∞∑
n=−∞

∫ ∞

−∞
eiβna+iknta

(
λ−1(t)− γ−1(t)

)
dt

= 1
4k3a

∞∑
n=−∞

(
λ−1

n − γ−1
n

)
≡ 1

4k3a
S̃(ka,βa), (4.9)

say, where S̃ is non-dimensional and

λn = ((βn/k)2 − 1)1/2, γn = ((βn/k)2 + 1)1/2, and βn = β + 2nπ/a. (4.10)

It is convenient to define scattering angles, ψn, n ∈ ZZ by

βn = k cosψn, (4.11)

where β0 = β = k cosψ0 = k cosψ . Then, provided |βn| ≤ k or | cosψn| = | cosψ + 2nπ/ka| ≤ 1 the ψn

define real angles with 0 ≤ ψn ≤ π and such that λn = −i sinψn. In this case we say that n ∈ N . Then it is
clear that the set N is non-empty for all ka, with at least one member corresponding to n = 0 and ψ0 = ψ

being the incident wave angle.
So

S̃(ka,βa) =
∑
n∈N

(
i

sinψn
− 1
(1 + cos2 ψn)1/2

)
+

∑
n �∈N

(
λ−1

n − γ−1
n

)
, (4.12)

where the infinite sum converges since λ−1
n −γ−1

n ∼ (ka/2nπ)3 as n → ∞ and the finite sum exists provided
sinψn �= 0 for some n = m, or ψm = 0,π , or | cosψ + 2mπ/ka| = 1, a situation termed as resonance by
Hills and Karp [11]. We shall not consider this type of resonance here.
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The scattered field given by (4.5) is now

us(r) = µ(1 − µS)−1

8πk2

∞∑
n=−∞

σ n
∫ ∞

−∞
eik(x−na)t

(
e−kλ|y|

λ
− e−kγ |y|

γ

)

= µ(1 − µS)−1

4k3a

∞∑
n=−∞

eiβnx

(
e−kλn|y|

λn
− e−kγn|y|

γn

)
, (4.13)

where the Poisson formula (4.8) has been used again. The scattered field (4.13) involves plane waves arising
from n ∈ N only. Thus, with x = r cos θ , y = r sin θ ,

us(r) ∼ iµ(1 − µS)−1

4k3a

∑
n∈N

eikr cos(θ−sgn(y)ψn)

sinψn
(4.14)

as r → ∞, arising from the first term in (4.13) for n ∈ N . It follows that

u(r) ∼ eik(x cosψ+y sinψ) +
∑
n∈N

Rneik(x cosψn−y sinψn), y → −∞, (4.15)

whilst

u(r) ∼
∑
n∈N

Tneik(x cosψn+y sinψn), y → ∞, (4.16)

where Rn, Tn represent the non-dimensional coefficients for plane waves reflected and transmitted (respec-
tively) from the periodic array, given by

Rn = iµ(1 − µS)−1

4k3a sinψn
, and Tn = δn0 + Rn. (4.17)

Provided µ defined by (2.12) is real, conservation of mean energy flux requires that

∞∑
n=−∞

(
|Rn|2 + |Tn|2

)
sinψn = sinψ . (4.18)

It is possible to prove that this relation holds for µ real.
A remarkable feature of the results is the possibility of total reflection of the given incident wave by a suit-

ably spaced array of points (see Fig. 3(a, b)). We have, using dimensionless variables,µ = (4k4a2)µ̃−(4/a2)̃κ

and S̃ = 4k3aS,

R0 = i[kaµ̃− κ̃/(ka)3]
(1 − [kaµ̃− κ̃/(ka)3 ]̃S) sinψ

(4.19)

and we shall assume just one scattered wave so that ka satisfies |cosψ ± 2π/ka| > 1. Then

S̃ = S̃r + i/ sinψ where S̃r =
∞∑

n=−∞�=0

(
λ−1

n − γ−1
n

)
− (1 + cos2 ψ)−1/2 (4.20)
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(a) (b)

Fig. 3 Variations of reflected wave coefficients |Rn| with ka for: (a) ψ = 90◦ and µ̃−1 = 0, κ̃ = 0 (head incidence, pinned
points) and (b) ψ = 30◦ and µ̃ = 2, κ̃ = 20 (oblique incidence, mass/spring loaded points)

and so

R0 =
[
−1 − i sinψ

(
[kaµ̃− κ̃/(ka)3]−1 − S̃r

)]−1
(4.21)

is such that R0 = −1 provided

S̃r = [kaµ̃− κ̃/(ka)3]−1. (4.22)

If R0 = −1 then T0 = 0 and no transmission of wave energy is possible. It is easy to see that (4.22) is
satisfied for any choice of µ̃ and κ̃ and any choice of ψ �= 0,π . Choose without loss of generality cosψ ≥ 0
so that 0 ≤ ψ < 1

2π . Then as ka increases from zero to its maximum allowed value (to ensure only one
reflection and transmitted wave exists) of 2π/(1 + cosψ) the right-hand side of (4.22) varies continuously
from either zero or infinity (depending upon whether κ̃ = 0) to some finite number whose value is not
important. At the same time, consideration of the term λ−1

−1 in the series part of S̃r in (4.20) shows that
S̃r increases from the negative value of −(1 + cos2 ψ)−1/2 to positive infinity. It follows that there exists
(at least) one value of ka for any fixed µ̃, κ̃ and ψ for which (4.22) is satisfied and the incident wave is
totally reflected. This result still holds when µ̃−1 = 0 (or κ̃ → ∞) corresponding to pinned points since the
condition (4.22) is simply S̃r = 0 and clearly the argument for the existence of a value of ka satisfying this
condition remains intact.

Other features of this problem can be investigated. Thus, as ka → 0, when only one reflected and
transmitted mode exists, (4.21) shows that for κ̃ �= 0, or for κ̃ = 0 and µ̃−1 = 0,

R0 ∼ −i
i − sinψ/(1 + cos2 ψ)1/2

.

as ka → 0. In the particular case when κ̃ = 0 and µ̃ is finite, it is equally simple to show that R0 → 0 as
ka → 0.

5 Trapped waves for two parallel arrays of points

As we have already observed, an interesting feature of the previous problem is that there exists a particular
frequency below the first cut-off frequency (i.e., only one reflected and transmitted wave exists) at which



J Eng Math (2007) 58:317–337 327

all the incident wave energy is reflected from the array. This property has been shown to be true for all
incident wave angles, ψ and values of µ̃ and κ̃ although the particular value of ka for which T0 = 0 varies
with these parameters. This leads us to the interesting prospect that, for two parallel periodic arrays of
constrained points, separated by a distance to be determined, may ‘trap’ waves by continual reflections in
each array in the absence of an incident wave. This principle has formed the basis of a number of recent
studies into the phenomenon of wave-trapping in surface water waves and acoustics, where the trapped
wave is said to occur ‘in the continuous spectrum’, since wave propagation to infinity is possible (in contrast
to the next section on Rayleigh–Bloch waves). See for example [12], where it is shown that the spacing,
2b, between the arrays should approximately satisfy χ = 1

2 nπ + kb sinψ , n ⊂ ZZ, where, at total reflection,
R0 = e2iχ and in this case we have shown R0 = −1 so that χ = ± 1

2π .
We write

u(r) =
∞∑

n=−∞
Ang(r; na, b)+

∞∑
n=−∞

Bng(r; na, −b) (5.1)

and assume An = σ nA0, Bn = σ nB0, for β = k cosψ , so that the phase relation between corresponding
points is as though an incident wave were present even though this is not the case.

There are now two possible trapped wave types, the first which is symmetric about y = 0 for which
we An = Bn and the second of which is antisymmetric about y = 0 and where we assume An = −Bn.
Following the preceding method for the single array provides the following conditions for symmetric and
antisymmetric trapped waves

S̃s,a = [kaµ̃− κ̃/(ka)3]−1, (5.2)

where

S̃s,a = S̃s,a
r + i(1 ± e2ikb sinψ)

sinψ
(5.3)

with

S̃s,a
r =

∞∑
n=−∞�=0

(
(1 ± e−2λnkb)

λn
− (1 ± e−2γnkb)

γn

)
− (1 ± e−2kb(1+cos2 ψ)1/2)

(1 + cos2 ψ)1/2
(5.4)

and the superscripts s(a) correspond to the +(−) signs and refer to symmetric (antisymmetric) motions. In
order to satisfy (5.2) it is necessary (but not sufficient) that S̃s,a is real, whence

kb sinψ =
{
(m − 1

2 )π , for symmetric waves
mπ , for antisymmetric waves

, (5.5)

which happens to be exact agreement with the approximate formula discussed earlier (it is not difficult to
see why this is so). With these values imposed we have

S̃s,a = S̃s,a
r ∼ S̃r (5.6)

for large kb, where S̃r given by (4.20) and the condition (5.2) reduces to (4.21) which is known to be satisfied
by a value of ka below the first cut-off. Similar arguments can be used to show that (5.2) can be satisfied
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by a value of a/b such that ka is below the first cut-off with kb already fixed by (5.5). The result holds for
µ̃−1 = 0 which corresponds to pinned points and the required conditions are S̃s,a

r = 0 with (5.5).
The full solution is given by (5.1) with An = Bn = σ nA0 or An = −Bn = σ nA0 for trapped waves

symmetric or antisymmetric (respectively) about the line of symmetry, y = 0. Satisfying the conditions
(5.3) and (5.5) for a trapped wave, ensures that there are no waves radiated as |y| → ∞ and it follows that
for the symmetric wave in |y| < b

us(r) = A0

∞∑
n=−∞

eiβnx

(
e−kλnb cosh kλny

λn
− e−kγnb cosh kγny

γn

)
, (5.7)

whilst for an antisymmetric wave in |y| < b

ua(r) = A0

∞∑
n=−∞

eiβnx

(
e−kλnb sinh kλny

λn
− e−kγnb sinh kγny

γn

)
, (5.8)

where βn = k cosψ+2πn/a and A0 is an arbitrary multiplicative constant. It is rare to have such an explicit
expression for trapped waves as given by (5.7), (5.8).

The conditions to be satisfied for a trapped modes between two rows of periodic points are (5.5) which
ensures no radiated waves as |y| → ∞ and (5.2) with (5.4). We thus have three independent parameters,
ψ , kb and b/a but it proves useful to illustrate results using the parameter βa = ka cosψ also.

Numerical results are presented in Fig. 4(a, b) for waves trapped between a pair of periodic arrays of
points. In the first figure µ̃−1 = 0 (pinned) and in the second figure µ̃ = 1, κ̃ = 0 (unsprung mass-loaded
points). In each case the solid curves represent the values of ka as a function of βa = ka cosψ whilst the
dashed curves are values of b/a measured on the same vertical scale as ka and corresponding to those
values of ka. The dotted diagonal lines show the boundary of the region of (ka,βa) parameter space being
considered. When βa = 0, ψ = 1

2π and the intersection of the solid curves with the diagonal cut-off
ka = βa represents ψ = 0. The lowest dashed and solid curves are for mode number m = 1 (the funda-
mental symmetric wave), increasing values of m giving rise to raised curves. Note how little the curve of
ka varies with different values of m. It can be seen that the curves of ka against βa tend quickly towards
a fixed curve which corresponds to the values at which T0 = 0 for each ψ in the problem of scattering by
a single array of points. We have limited the sequence of dashed curves to just the first four modes; two
symmetric interlaced by antisymmetric modes. The sequence continues indefinitely for increasing values
of b/a.

6 Rayleigh–Bloch waves along infinite periodic arrays of points

In the theory of scattering by diffraction gratings there exists the possibility of localised waves travelling
along the grating in the absence of an incident wave. These are termed Rayleigh–Bloch waves by Wilcox
[13, Sect. 1].

For a general diffraction grating it is not easy to determine the dominant wavenumber β modulating the
periodicity of the grating but for the simpler form of the periodic array problem being considered here,
progress can easily be made.

We seek a displacement u(r) which exists in isolation, for a particular relation between a dominant
wavenumber β and the infinite plate wavenumber k, for each a. Thus we assume that

u(r) =
∞∑

n=−∞
Ang(x, y; na, 0), (6.1)
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(a) (b)

Fig. 4 Solid curves show variation of ka against βa at which trapped waves occur for a double array with (a) µ̃−1 = 0 (pinned
points) and (b) µ̃ = 1, κ̃ = 0 (unsprung mass loaded points); dashed curves give corresponding values of b/a against βa

where, as before An = A0σ
n but now β > k so that there can be no incident or reflected and transmitted

waves. Then

u(r) = A0

∞∑
n=−∞

σ ng(x, y; na, 0), (6.2)

where A0 is an arbitrary ‘amplitude’ factor. Applying (4.1) now gives, after relabelling the sums,

1 = µS (6.3)

with S(ka,βa) given by (4.9), as the condition for a solution of the form (6.2) where now S is real-valued
since β > k.

It is easy to show that it is necessary to consider only values of βa ∈ [0,π) since S(ka, 2mπ + βa) =
S(ka,βa), a simple relabelling of the sum in (4.9) gives the same value for S. In addition, the relation
S(ka, 2π − βa) = S(ka,βa) can also be shown with relative ease.

In terms of non-dimensional quantities already introduced, (6.3) becomes

S̃ = [kaµ̃− κ̃/(ka)3]−1 (6.4)

and now S̃, as defined by (4.9), takes the range of real values between zero and infinity as ka is increased
from zero to βa a fact that needs to be kept in mind during the arguments that follow in determining if
solutions of (6.4) exist. Thus, a variety of situations can arise depending upon the choice of constraint at
the points along the array.

First, if the points are all pinned, corresponding to µ̃−1 = 0 or κ̃−1 = 0 then (6.4) has no solution for
real ka > 0, and no Rayleigh–Bloch waves can exist.

Similarly, there are no solutions if µ̃ = 0 and κ̃ > 0 corresponding to purely sprung points. If, on the
other hand, κ̃ = 0 and µ̃ > 0, corresponding to unsprung mass loaded points then its easy to see that a
solution must always exist.

In the most complicated case where both µ̃ and κ̃ are non-zero and finite the situation is less clearcut.
Thus, one can show by inspecting the relation (6.4) that a solution exists if κ̃/µ̃ < (βa)4 ≤ π4 for any given
non-dimensional value of βa. This is because as ka → 0, the right-hand side of (6.4) tends to zero, but from
below. However, if the quantity in the square brackets passes through zero, as ka is increased from zero
to its maximum allowed value of βa, then the right-hand side of (6.4) switches from negative to positive



330 J Eng Math (2007) 58:317–337

Fig. 5 Dispersion curves, ka against βa, for S̃(ka,βa) = [kaµ̃− κ̃/(ka)3]−1 for: (a) fixed κ̃ = 0 and varying values of µ̃ (shown
against curves); (b) fixed µ̃ = 10 and varying values of κ̃ (shown against curves)

values and hence a solution will exist. What has been shown is that Rayleigh–Bloch solutions only exist for
of values of βa satisfying (̃κ/µ̃)1/4 < βa ≤ π whilst no solution exists if κ̃ > π4µ̃.

Computations of (6.3) are given in Fig. 5(a) when κ̃ = 0 where it is shown that for each positive value of
µ̃, there is precisely one value of ka corresponding to each value of βa ∈ (0,π ], with k ∼ β as µ̃ → 0 and
k → 0 as µ̃ → ∞.

In Fig. 5(b) we choose a fixed positive value of µ̃ = 10 and vary κ̃ to illustrate the theory above that
Rayleigh–Bloch modes will exist provided κ̃ does not exceed a value of 10π4 ≈ 974, and that for increasing
values of κ̃ solutions are predicted over a shrinking interval of values of βa.

The form of the Rayleigh–Bloch wave when (6.3) is satisfied is more clearly illustrated by applying the
Poisson formula to (6.2). Thus

u(r) = A0eiβx

4k3a

∞∑
n=−∞

e2π inx/a

(
e−kλn|y|

λn
− e−kγn|y|

γn

)
(6.5)

and u(ma, 0) = A0σ
mS = Am/µ as required by (4.1). A special case arises if β = π/a when (6.5)

reduces to

u(r) = A0

2k3a

∞∑
n=0

cos[π(2n + 1)x/a]
(

e−kλn|y|

λn
− e−kγn|y|

γn

)
(6.6)

and the displacement is now a standing wave with nodes at x = ±ma/2, m ∈ ZZ for all y, which decays
exponentially to zero with increasing |y|. If we restrict ourselves to |x| < a/2 we have a simply supported
elastic strip in |x| ≤ a/2, −∞ < y < ∞ satisfying u(±a/2, y) = uxx(±a/2, y) = 0 in the centre of which a
point mass at the origin is undergoing undamped harmonic oscillations satisfying u(0, 0) = S = 1/µ. This
is the kind of dynamic trapped mode as sought by McIver [14] in which the body (in this case a point)
oscillates freely without radiation to infinity.

The effect of the presence of a Rayleigh–Bloch wave for an infinite periodic array upon the scattering
of plane incident waves by a finite periodic array can be significant, as illustrated in Fig. 6. In this figure
where µ̃ = 1 implies that the points are free to oscillate, the amplitude of every other point along an array
of N = 20 points is plotted as a function of ka. It can be observed that points undergo their maximum
oscillation at a common value of ka = 1.9078 and that, at this wavenumber, the maximum amplitude
occurs at the centre of the array. The near-resonant value of ka is closely related to the value of ka at
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which a Rayleigh–Bloch wave occurs with βa = π . This particular value of βa is significant in that it is
the value for which the Rayleigh–Bloch waves take the form of standing waves—see the earlier discussion
surrounding (6.6). Similar observations have been made by Maniar and Newman [2] in connection with
surface water-wave interaction with long finite periodic arrays of vertical circular cylinders. There, the
maximum amplification in wave elevation occurs in the vicinity of the central cylinders in the array at a
frequency very close to the frequency at which standing Rayleigh–Bloch waves occur.

As an example of the type of motion on the plate at near resonance, we observe in Fig. 7 the case of
oblique wave incidence at a particular instant in time; light and dark shading represents peaks and troughs
on the plate.

7 An elastic plate floating on water

All of the previous problems considered in this paper can be repeated for the case of a thin elastic plate
floating on water of constant depth, h, say, simply by the replacement of the Green function defined by
(2.2) for the elastic plate in vacuo by an appropriate Green function, describing the coupling between the
plate and the water. Thus we shall demonstrate that the displacement of the plate previously given by (2.1)
is modified to include a term on the right hand side which relates to the pressure difference across the plate
due to the presence of the water.

According to classical linear water-wave theory there exists a velocity potential�(r, z, t) where the fluid
velocity vector is given by v(r, z, t) = ∇�. Assuming a time-harmonic response of angular frequency ω and
writing �(r, z, t) = Re{φ(r, z)e−iωt} where, in the body of the water, Laplace’s equation is satisfied,
(
�+ ∂2/∂z2

)
φ = 0, −h < z < 0, −∞ < x, y < ∞

with

∂φ/∂z|z=−h = 0

describing no-flow through the bed. The linearised kinematic condition on the boundary between the
elastic plate, having displacement Re{u(r)e−iωt}, and the fluid is

∂φ/∂z|z=0 = −iωu(r). (7.1)

Fig. 6 The non-dimensional amplitude of mass-loaded
points as a function of ka and pin number for ψ = 0◦,
N = 20 points and with µ̃ = 1, κ̃ = 0

Fig. 7 Snapshot in time of the wave amplitude (light to
dark represent peaks to troughs) on a plate with ψ = 45◦,
N = 20 mass-loaded points (shown as dots), µ̃ = 1, κ̃ = 0
and at resonant frequency ka = 1.9078. Maximum ampli-
tude at centre of array is 8 times the incident wave ampli-
tude
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The equation of motion of the plate assuming time-harmonic variations is given by

(D�2 − mω2)u(r) = [p]z=0 = iρωφ(r, 0)− ρgu(r), (7.2)

where [p]z=0 denotes the jump in the pressure across the plate whose value is determined using Bernoulli’s
linearised equation for the pressure in the fluid. In the above, ρ is the water density and g is gravitational
acceleration. Rearrangement of (7.2) into a form consistent with Sect. 2 gives

(�2 + M − k4)u(r)− iω−1Fφ(r, 0) = 0, (7.3)

where k4 = mω2/D as before and M = ρg/D, F = ρω2/D.
For an elastic plate of thickness d over water, M/k4 = ρg/ρpdω2 where ρp is the density of the plate.

Using typical values, d = 1, ρp ≈ ρ, g = 10 shows that M/k4 ≈ 10/ω2. For wavelengths between 40 m
and 180 m, ω varies between about 3 s−1 and 0.5 s−1 corresponding to wave periods between 3 s and 12 s.
So, only for unrealistically high-frequency short-wavelength waves k4 � M, whilst for longer waves of
lower frequency in the range of physical interest, k4 � M. In the former of the two scenarios, M can
effectively be neglected whilst F can also be shown to have a relatively small contribution and the wave
motion is dominated by flexural effects. Thus, the results already obtained for the elastic plate in vacuo
will be representative of those for these high-frequency motions over water. In the more realistic case of
longer waves, the situation is reversed and the effects of fluid loading dominate inertia forces.

A flexural-gravity incident wave propagating on a homogeneous elastic plate at an angleψ to the positive
x-axis over water is described by the potential

φi(r, z) = Aeik0(x cosψ+y sinψ) cosh k0(z + h),

where A = −iω/(k0 sinh k0h) and from (7.1), the plate displacement is given by

ui(r) = eik0(x cosψ+y sinψ). (7.4)

Here, k0 is the wavenumber (replacing k for an elastic plate in vacuo) and is determined as the real positive
root, γ = k0, of the dispersion relation

K(γ ) ≡ (γ 4 + M − k4)γ sinh γh − F cosh γh = 0. (7.5)

We note that there are also an infinite series of pure imaginary roots to (7.5) above, γ = ±km, m = 1, 2, . . .
ordered such that Im{km+1} > Im{km} > 0. In addition there are four complex roots, labelled γ = ±k−1
and γ = ±k−2 such that k−1 = p + iq, with p, q > 0, and k−2 = −p + iq both exist in the upper half plane.

We define a fundamental Green function G(r, z; r′) for a source in the elastic plate over water satisfying

(
�+ ∂2/∂z2

)
G = 0, −h < z < 0, −∞ < x, y < ∞ (7.6)

with Gz|z=−h = 0, and

(�2 + M − k4)gw − iω−1FG|z=0 = δ(r − r′) (7.7)

the resulting plate elevation given by

gw(r; r′) = i
ω

Gz|z=0. (7.8)
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Fox and Chung [15] have previosuly derived the Green function which, in the current notation is given by

G(r, z; r′) = ω

4

∞∑
m=−2

Ym(z)Y ′
m(0)

Cm
H0(kmρ)

and consequently

gw(r; r′) = i
4

∞∑
m=−2

[Y ′
m(0)]2

Cm
H0(kmρ), (7.9)

where Ym(z) = cosh km(z + h) and Cm is given by (A.2). We note the asymptotic expansion of the Hankel
function, H0(z), for small arguments,

H0(kmρ) = const + 2i
π

log kmρ − ik2
mρ

2

2π
log kmρ + O(k2

mρ
2), ρ → 0

where the value of the constant is not important in what follows. Using this expansion in (7.9) along with
the relations in (A.1)–(A.4) of the Appendix we can show that

gw(r; r′) ∼ Cw + ρ2 log ρ

8π
+ O(ρ2), as ρ → 0. (7.10)

This form for the Green function in the vicinity of the point of forcing is, as expected, of the same form as
(2.7) for a plate in vacuo, but instead of taking the value C = i/8k2 we now have

Cw = − 1
2π

∞∑
m=−2

[Y ′
m(0)]2

Cm
log km. (7.11)

With the appropriate Green function given by (7.9) constructed and the property (7.10) with Cw now
given by (7.11) established we can approach each of the problems previously considered for a plate in
vacuo with little extra complication. For example, for the scattering of waves by N points located at rn,
n = 1, . . . , N on the elastic plate on water constrained by a mass/spring system, we simply write

φ(r, z) = φi(r, z)+
N∑

n=1

AnG(r, z; rn)

with associated displacements

u(r) = ui(r)+
N∑

n=1

Angw(r; rn).

This equation is the same form as (3.1) and the procedure used for a plate in vacuo follows exactly as
described in Sect. 3.

For problems involving infinite periodic arrays considered in Sects. 4–6, the procedure for an elastic
plate over water follows in exactly the same manner, but we must replace S by

Sw =
∞∑

n=−∞
σ−ngw(na, 0; 0, 0).

As a reminder, σ = eiβa, a is the spacing between adjacent points and β = k cosψ . Use of the integral
identity for the Hankel function gives

Sw =
∞∑

n=−∞
σ−n i

4

∞∑
m=−2

[Y ′
m(0)]2

Cm

(
1
π i

∫ ∞

−∞
eikmnatλ−1(t)dt

)
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and λ(t) = (t2 − 1)1/2 as in (2.6). Subsequent use of the Poisson summation formula (see (4.8) in Sect. 4)
gives, after some algebra,

Sw = 1
2a

∞∑
m=−2

[Y ′
m(0)]2

Cm

∞∑
n=−∞

1
(β2

n − k2
m)

1/2
(7.12)

and βn = β + 2nπ/a. In its present form the second sum is divergent. However, because of the relation
(A.1), we can write

Sw = 1
2a

∞∑
m=−2

[Y ′
m(0)]2

Cm

∞∑
n=−∞

(
1

(β2
n − k2

m)
1/2

− 1
|βn|

)
,

the value of Sw is unchanged and the second sum is now convergent. Indeed the second series decays like
O(m2/n3) for each fixed value of m and since it can be shown [16] that the term [Y ′

m(0)]2/Cm = O(m−6)

as m → ∞, the double sum converges rapidly in the form written.
Proceeding further shows how the reflection and transmission coefficients, Rn, Tn, for n ∈ N (defined

in Sect. 4) can be derived from the far-field behaviour of the scattered part of the plate elevation, which
works out to be

us ∼ iA0

2a

[Y ′
0(0)]2

k0C0

∑
n∈N

eik0r cos(θ−sgn(y)ψn)

sinψn
, as y → ±∞

with A0 = µ/(1 − µSw) and where ψn are the scattering angles (see Sect. 4), so that

Rn = iµ(1 − µSw)
−1[Y ′

0(0)]2

2k0aC0 sinψn
,

whilst Tn = δn0+Rn. It follows from consideration of the imaginary part of Sw, in the case when there is only
one reflected and transmitted wave, that R0 = −1 (and hence T0 = 0) when the condition Re{Sw} = 1/µ
is met. A proof that there exists a frequency for which this condition is satisfied was provided in Sect. 4
for an elastic plate in vacuo, when Sw is replaced by the much simpler S. The increased complexity of the
expression for Sw does not allow us to make the same type of progress here. Indeed, numerical results
show that only for certain ranges of parameters is there a frequency for which there is total reflection from
the array (i.e., |R0| = 1).

In Fig. 8 we show the maximum amplitude at the centre of four pinned points on an elastic plate over
water. In this example (and later ones) we choose the plate thickness, d = 1 m, the effective Young’s
modulus E = 5 × 109 Pa, Poisson’s ratio, ν = 0.3, the plate density to be 925 kg m−3, the density of water
as 1025 kg m−3 and the water depth to be 20 m.

In Fig. 8 pinned points are placed at rn = (±a, ±a), and a/h takes the values 1
2 , 1 and 2 so that the points

form the vertices of square with sides of length 20, 40 and 80 m respectively. Larger values of k0a imply
shorter wavelengths and so the range of values of k0a in Fig. 8 has been restricted to k0a < 5 to remove
unrealistically short wavelengths. Comparison with Fig. 1(a) appears to show an increasing agreement with
the in vacuo results for smaller values of a/h. However, this is not surprising since a reduction in a/h
implies, for each fixed value of non-dimensional quantity k0a, an increase in k0 and hence a shortening
of the wavelength. We have already argued that results for shorter wavelengths for plates over water will
tend towards those for a plate in vacuo. For example, the curve showing the peak resonance in Fig. 8
is for a/h = 1

2 —or a = 10 m—and resonance occurs at k0a = 1.63 corresponding to a wavelength of
approximately 40 m. For a/h = 1—or a = 20 m—a much smaller resonant peak occurs at a wavelength of
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Fig. 8 Maximum
displacement at the
origin, |u| = |u(0, 0)| as ka
varies for: (a) N = 4
pinned points at (±a, ±a)
with ψ = 0◦. The values
of a/h are shown against
curves

(a) (b)

Fig. 9 Variations of reflected wave coefficients |Rn| with k0a for: (a) ψ = 90◦ and µ̃−1 = 0, κ̃ = 0 (head incidence, pinned
points) and (b) ψ = 30◦ and µ̃ = 2, κ̃ = 20 (oblique incidence, mass/spring loaded points). In each plot point separation
distance a = 10 m (solid lines), a = 20 m (long dashed), a = 40 m (dotted)

approximately 80 m. In other words, the side of the square formed by the pinned points is approximately
half a wavelength of the incident wave at resonance.

In Fig. 9 we show the reflected wave amplitudes for an infinite periodic array of constrained points in
an elastic plate on water. We use the same set of physical parameters as before, and restrict the range
of wavenumber values to k0a < 5. For the sake of comparison, Figs. 9(a, b) mimic parameters chosen in
producing Fig. 3(a, b) for a plate in vacuo. Thus, Fig. 9(a) has wave approaching a periodic array of pinned
points head-on, whilst in Fig. 9(b) the wave approaches obliquely (ψ = 30◦) and the points are constrained
by a mass/spring system. In each of the two figures, results for three different array separations (a/h = 1

2 ,
1 and 2 implies a = 10, 20 and 40 m) are presented. In Fig. 9(b), a second set of reflected wave ‘cut-on’
beyond the appropriate value of k0a. The common value of k0a at which R0 = 0 is easily explained by
the fact that µ = 0 for k0a = (̃κ/µ̃)1/4. It also has a physical explanation, since the wave frequency corre-
sponding to this value of k0a exactly matches the natural frequency of oscillation for the local mass/spring
system at each point, implying that the points become completely transparent to the incident wave at this
frequency. It can be seen from this set of results that total reflection is possible, but, unlike the plate in
vacuo, not guaranteed. It is also clear from these results that there can be a quite significant qualitative
overall difference between the results for an in vacuo plate and one bounded below by a heavy fluid.
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8 Conclusions

In this paper we have considered a number of problems which involve the interaction of flexural waves on
a thin elastic plate which is constrained to move at a number of points via a mass/spring system. Attention
has focused on elastic plates which are not bounded below by a fluid since the resulting mathematical
analysis can be demonstrated in a very straightforward manner. Towards the end of the paper, we have
considered the extension which involves an elastic plate floating on water, as a model of a large floating
structure either tethered or supported at a number of points. In particular we have shown that the methods
used in the preceding sections carry over to this more complex physical situation in a quite straightforward
manner. We have drawn attention to the differences that exist between the simplified in vacuo problem
and the problem involving fluid loading, but have also illustrated similarities in the type of results that can
be obtained.

A range of interesting wave phenomena have been demonstrated, both numerically and, in many cases,
assisted by analysis. These involve near resonance for finite arrays of constrained points, total wave reflec-
tion by infinite periodic arrays, trapping of waves by parallel periodic arrays and Rayleigh–Bloch waves
along periodic arrays.

Appendix A: Some important identities

Evans and Porter [16] derived certain identities, which are used in Sect. 8 of this paper, and which we
briefly derive here since a different notation is being used. The first identity is

0 = 1
2π i

∮
C

γ 2 sinh γh
K(γ )

dγ = 2
∞∑

m=−2

k2
m sinh kmh
K′(km)

=
∞∑

m=−2

[Y ′
m(0)]2

Cm
, (A.1)

where K′(km) = 2kmCm/Y ′
m(0) and

Cm = 1
2 [Fh + (5k4

m + M − k4) sinh2 kmh]. (A.2)

The vanishing of the integral follows since the integrand is O(γ−3) as |γ | → ∞ and C represents a circular
contour whose radius tends to infinity. Also, since the integrand is odd in γ , the residues from the poles at
γ = km double up with those from poles at γ = −km. Calculations based on similar principles give, first

0 = 1
2π i

∮
C

(
γ 4 sinh γh

K(γ )
− 1
γ

)
dγ = 2

∞∑
m=−2

k4
m sinh kmh
K′(km)

− 1 =
∞∑

m=−2

k2
m[Y ′

m(0)]2

Cm
− 1, (A.3)

the extra term in the integrand being included to ensure sufficient decay at infinity and, then,

0 = 1
2π i

∮
C

(
γ 6 sinh γh

K(γ )
− γ

)
dγ = 2

∞∑
m=−2

k6
m sinh kmh
K′(km)

=
∞∑

m=−2

k4
m[Y ′

m(0)]2

Cm
. (A.4)
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